Math. 101 Incomplete Final Exam.

Date : February 12, 1996. Duration: Two Hours.

Calculators are not allowed

Answer the following questions:

1. (a) Evaluate each of the following limits, if it exists:

(ii) $\lim_{x\to 0} \frac{\cos x}{x}$

(*iii*) $\lim_{x\to 1} \sqrt{x-1}$ (2+2+2 points)

(b) Find the derivative of

 $y = \tan^2 \sqrt{1 + \sec^2 x^3}$

(4 points)

2. (a) Find the dimensions of the rectangle of maximum area that can be inscribed inside the curve (see the figure)

(%y) (6 points)

(b) Let

 $f(x) = \int_{0}^{\sin x} t^3 dt$

Find an equation for the tangent line to the graph of f at $x = \frac{\pi}{4}$.

(4 points)

3. Let

 $f(x) = \frac{x^4 + 16}{x^2}$

- (a) Find the intervals on which f is increasing or is decreasing, and find the local extrema of f (if any).
- (b) Find the intervals on which the graph of f is concave upward or concave downward, and find the points of inflection (if any).
 - (c) Find the vertical and horizontal asymptotes for the graph of f (if any).
 - (d) Sketch the graph of f.

(2+2+2+2 points)

4. Evaluate the following integrals:

(a) $\int x \sin x^2 \sqrt{1 + \cos x^2} dx$.

(b) $\int |x-\sqrt{x}| dx$. (5+5 points)

- 5. Find the area of the region bounded by the graphs of 3y x = 6, x + y = -2 and $x+y^2=4.$ (6 points)
 - 6. Find the arc length of the graph of the equation $6xy-y^4-3=0$ from $(\frac{19}{12},2)$ to $(\frac{14}{3},3)$. (6 points)

(Good Luck)